
Towards Efficient Data Wrangling with LLMs using Code
Generation

Xue Li
MotherDuck & University of Amsterdam

Amsterdam, Netherlands
x.li3@uva.nl

Till Döhmen
MotherDuck

Amsterdam, Netherlands
till@motherduck.com

ABSTRACT
While LLM-based data wrangling approaches that process each row
of data have shown promising benchmark results, computational
costs still limit their suitability for real-world use cases on large
datasets. We revisit code generation using LLMs for various data
wrangling tasks, which show promising results particularly for
data transformation tasks (up to 37.2 points improvement on F1
score) at much lower computational costs. We furthermore identify
shortcomings of code generation methods especially for seman-
tically challenging tasks, and consequently propose an approach
that combines program generation with a routing mechanism using
LLMs.
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1 INTRODUCTION
Data wrangling tasks such as data cleaning, data integration, and
data transformations are part of almost every data analytics work-
flow and ETL pipeline when working with real-world data. As
wrangling tasks can be tedious and time-consuming [7], methods
that automate or assist users with such tasks are a valuable addition
to BI and data warehousing systems like MotherDuck. When talk-
ing to MotherDuck users, we observed that aside from ease-of-use,
quality and computational efficiency, interpretable and determin-
istic solutions are crucial for the adoption and trust in automated
wrangling solutions. For ad-hoc analytics, users want to write sim-
ple prompts that describe the desired wrangling task, and iterate
over ideas quickly, without the need to extensively label data. At
the same time solutions need to be able to process millions of rows
at low latency. For ETL pipelines, users want to have fine-grained
control over the transformations that are applied to the data, and
want the automated methods to behave deterministically.

We see two main directions in existing work for data wrangling.
One idea is to apply machine learning or language models to each
row of data (LLMPR). Machine learning (ML) or fine-tuned SLMs
(small language models) [5, 14, 16] require large amounts of la-
belled training data to be able to perform a desired task, which
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makes them not well suitable for ad-hoc analytics scenarios. While
large language models (LLMs) [9] perform decently in zero-shot
or few-shot settings, they incur high latency and are expensive to
apply to each row, which makes them unsuitable for million-row
scale datasets. LLMPR methods are furthermore not well suited
for structured-to-structured data transformation, such as unit con-
version, as they struggle with calculations. Another direction is to
use program synthesis or programming-by-example (PBE) meth-
ods [1, 4, 7] that derive a program (e.g. Pandas, or Excel-Macro)
from a given set of input-and-output examples. Those methods have
the desired property of being well interpretable and deterministic,
and produce code that can be executed efficiently on millions of
rows. However, traditionally, program synthesis and PBE methods
were challenging to adapt to new tasks. Now, with LLMs, using PBE
methods for data wrangling is becoming more feasible. However,
even then, PBE methods struggle with semantically challenging
tasks (see BingQL-semantics eval in Section 4.2) if they were not
specifically implemented to handle them. Furthermore, giving nat-
ural language instruction rather than input-output pairs feels more
natural for certain tasks, e.g. "detect faulty entries in this column
or "convert Roman numerals to Arabic numbers".

We revisited LLMs as prompt-based code generators for data
wrangling tasks, and evaluated our method on existing data wran-
gling benchmarks. Our experiments show that LLM-generated data
wrangling code outperforms existing LLMPR and traditional PBE
methods, in particular on data transformation tasks, while the per-
formance on other tasks such as entity matching and error detection
varies depending on the task and dataset. We attribute this to some
tasks requiring a semantic understanding of the input, where code-
based approaches underperform compared to LLMPR methods.

We conclude that neither of both directions alone have the poten-
tial to lead to high-quality and cost-efficient automated wrangling
methods. To leverage the full potential of code generation for data
wrangling we therefore see the need for a routing or planning
mechanism that decides which task and subset of the data can be
processed by a code-based approach.

2 MOTIVATING EXAMPLE
Imagine a data scientist working on a table with 1 million rows.
She faces several tasks: converting time to decimal hours, trans-
forming Roman numerals to Arabic numbers, and correcting format
inconsistencies and potential errors. Ideally, she is looking for an ap-
proach that ensures deterministic transformation, with explainable
rationales behind the decision. Above all, she favors an approach
that is effective and cost-efficient, preferably flexible to adapt to
different tasks. These criteria aim to balance the need for explain-
ability, efficiency, flexibility and quality. She explores the following
three different strategies for solving the tasks.
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Figure 1: Overview of our envisioned efficient data wrangling workflow.

1) LMs on a Per-Row Basis. Fine-tuning SLMs [16] for specific
tasks requires labelled data, which may not be readily available
or may require additional effort to prepare. Applying LLMs on a
per-row basis [9] can achieve significant capabilities on the tasks,
however processing the whole million-rows table through API
calls with an LLM can take up to multiple hours depending on the
payload size and rate limit constraints, for a single task. Not to
mentioned the pricing that can be multiple hundreds of dollars per
task. Moreover, the transformation is not deterministic and may
lead to different results over multiple runs.

2) Transform-Data-by-Example [1, 3, 4, 6, 13]. This strategy
struggles with semantically complex transformations, such as con-
verting between vastly different data formats or correcting errors.
Achieving the desired accuracy may require extensive example sets.
Moreover, it does not utilize instructions for the task, making it
unsuitable for tasks which are more natural to describe with textual
instructions rather than input/output pairs.

3) Code Generation and Text2SQL models [2, 8]. They lack of
a verification step to ensure the quality and correctness of the
generated programs or queries, which can lead to more manual
efforts, especially for complex tasks.

Given all these limitations from the existing approaches, she
either needs to accept the drawbacks of one of these approaches,
or needs to manually combine them, which is tedious and time-
consuming. Instead, we envision a new efficient workflow that
balances efficiency with the capabilities of handling semantically
complex tasks, incorporating a manual or automated verification
step to ensure data integrity.

3 ENVISIONED APPROACH
To address the limitations mentioned in Section 2, we propose an
efficient data wrangling workflowwith code generation using LLMs
in Figure 1. The foundational premise of our approach involves a
shift from employing LLMs for task execution on a per-row basis to
prompting LLMs for function generation that addresses the bulk of
records. This proposedworkflow leverages LLMs for their reasoning
capabilities to reason about complex tasks, diverging from their use
as a repetitive task solver.
High-level overview of the approach. In our envisoned ap-
proach, the user provides a task instruction alongside an optional set
of demonstration examples. The task router determines whether

a task can be addressed through a code-based solution. If feasi-
ble, the pipeline then direct it to the Code Generation Framework,
which ranks multiple candidate code snippets against each other
and finally returns the highest scoring code snippet for solving
the task. When using the task-solving code snippet, a data router
filters rows that are valid for processing and separate the invalid
ones. This can be done by generating input filtering code based
on the assumptions made in the task solving code. The process
then iterates through the unsolvable rows, generating new code
iteratively until only a few rows remain that cannot be solved by
code. The few unsolvable rows can be subsequently processed by
LLMPR or human.
Generating Labels. Conceptually, our envisioned approach will
not need human-provided demonstration examples. Instead, we
leverage existing LLMPR methods as a labeler [12]. To curate a
set of high quality demonstration examples, users can intervene
after the labels are generated. Labels will be used as demonstration
examples during code generation and for validation of the generated
code (see Section 4.1). In the future, we aim to compare different
approaches to assist users with curating the labels in a human-in-
the-loop manner by intelligently selecting samples to show to the
user, e.g. using stratified sampling or approaches like cleanlab [10].
Routing Tasks and Data. The goals for the task and data routers
are straightforward: the task router identifies tasks as either solv-
able or not solvable by code, while the data router determines if an
individual row can be handled by the generated code or not.

One possible implementation for the task router is an LLM or
a small fine-tuned language model that maps natural language
task instruction to an existing taxonomy of task types (see subsec-
tion 4.2 for a potential taxonomy). The data router we envision
as an LLM-generated code snippet that validates whether a given
input conforms to the assumptions that the task solving code makes
(e.g. if the task solving code converts Roman to Arabic numerals,
the data router code should ensure that input does not contain any
characters other than I, V, X, L, C, D, and M). The data router code
can be generated alongside the task solving code for each task, and
can also be interpreted and adapted by a human-in-the-loop.

The advantages of this workflow are threefold, each contributing
to its robustness and utility:
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• Transparency, Explainability and Determinism. The workflow en-
sures transparency by making the generated code fully accessible
to the user. This enables the outcomes to be deterministic, and
enhances the explainability of the workflow by providing the
rationale behind the code generation. Except for the demonstra-
tions users chose to provide to the pipeline, majority of the data
do not need to go through the LLM.

• Efficiency. The efficiency of this workflow is underscored by its re-
duction in the number of necessary LLM calls. Instead of prompt-
ing LLM for each of the 𝑁 instances, the process requires prompt-
ing LLM only𝐷+𝐶 times. Given that𝐷 (the size of the evaluation
dataset) and 𝐶 (the number of code pieces generated) are typi-
cally much smaller than𝑁 , this approach can significantly reduce
computational resources and time.

• Flexibility. This workflow demonstrates flexibility in several as-
pects, through its ability to generate code across different pro-
gramming languages (Python, SQL/Macros) and the adaptability
introduced by the routing mechanism.

4 EXPERIMENT
The first step towards building the envisioned efficient data wran-
gling workflow is to explore if, and to what extent, we can use LLMs
for code generation that performs better than traditional PBE meth-
ods and compliments LLMPR methods. We evaluate the suitability
of code generation on common benchmark datasets ( [4], [9]), using
the provided ground truth labels as demonstration data.

4.1 Code Generation Framework
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Figure 2: Code generation framework.

The code generation framework1 is illustrated in Figure 2, fol-
lowing the generate, verify and rank pipeline. This framework is
designed to facilitate the code generation, specifically encouraging
the use of regular expressions and string manipulation for tasks
like data transformation. Additionally, it leverages substring edit
distance metrics for tasks related to entity matching or error detec-
tion.

Prompt Formulation. The prompts comprise three primary ele-
ments: general-task-prompt, dataset-specific-instruction,
and demonstrations. These components are designed to guide the
Large Language Models (LLMs) in generating task-specific code,

1You can find the implementation at: https://github.com/effyli/efficient_llm_data_wrangling.

with inputs being the task type (e.g., error detection) and a subset
of data samples as demonstrations.
• The general-task-prompt remains fixed for each type of data
wrangling task, outlining the comprehensive objectives and con-
straints inherent to the task, ensuring that themodel has a general
understanding of the task’s nature and scope.

• The dataset-specific-instruction context through the dataset
schema or specific directives in natural language. This tailors the
model generation to the distinction of the specific dataset. This
component is optional.

• The demonstrations, consist of input-output pairs extracted
from the annotated evaluation dataset, in the context of this
work, they are sampled from the benchmark datasets’ training
split. For tasks characterized by imbalanced output values, such
as error detection and entity matching, stratified sampling is
employed to maintain category balance.
Adopting the ReAct prompt framework [15], we prompt models

to perform reasoning prior to code generation. This can reduce hal-
lucination, and emphasize explainability and transparency through-
out the generation process. Moreover, we integrate the function
calling feature fromOpenAI [11] to ensure that the output conforms
to the desired format.

Code validation. The validation phase of our generated code
employs a dual-faced approach to ensure both functionality and
efficacy, maintaining the reliability of the code output. Firstly, we
check code executability, identifying any syntax errors or logical
inconsistencies that may prevent code from running. Secondly, we
have performance evaluation on the demonstration data. The ideal
outcome is for the generated code to achieve a 100% accuracy or F1
score on these demonstration inputs, underscoring the precision
and relevance of the code to the task. If the generated code fails to
meet either criteria, the process iteratively refines the code by re-
prompting. In this phase, both the generated code and the associated
error messages (e.g. not achieving performance threshold) are fed
back into the system as inputs. This feedback loop enables the
LLM to either refine the existing code or generate an entirely new
solution, informed by the specific issues encountered.

Generated code ranking. Following the validation phase, each
piece of successfully validated code, along with its accuracy or F1
score derived from performance on the demonstration data, is added
into the generated code pool. This process is repeated N iterations,
to compose a set of distinct generated code. The inherent variability
of LLM outputs ensures that each iteration has the potential to yield
unique code variants with distinct demonstration samples.

Dataset PBE [4] LLMPR [9] Code Generation
(Ours)

BingQL-semantics 32.0 54.0 91.6
BingQL-Unit 96.0 N/A 95.0
Stack-overflow 63.0 65.3 87.4
FF-GR-Trifacta 91.0 N/A 83.7
Head cases 82.0 N/A 74.6

Average 72.8 N/A 86.46

Table 1: F1 score on Data Transformation task, 𝑘 = 3.
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Task Dataset LLMPR[9] Code Generation
(Ours)

EM Fodors-Zagats 100 95.5
EM Beer 100 75.0
EM DBLP-ACM 96.6 19.7
EM DBLP-GoogleScholar 83.8 69.7
EM Amazon-Google 63.5 42.1
EM iTunes-Amazon 98.2 70.0
EM Walmart-Amazon 87.0 25.5

DI Buy 98.5 84.6
DI Restaurant 88.4 50

ED Hospital 97.8 23.5
ED Adult 99.1 100*

Table 2: Accuracy on Data Imputation task and F1 on Entity
Matching and Error Detection, 𝑘 = 10.
(* score is only evaluated on the "income" column.)

4.2 Preliminary Results
We test the code generation framework on benchmark datasets
from Entity Matching (EM), Error Detection (ED), Data Imputation
(DI) and Data Transformation (DT) tasks, following prior work [9].
For these experiments, we generate Python code for its wide usages
and rich ecosystem for data science and machine learning tasks.
We use GPT-4 as our LLM representing the latest advancement at
the time. The results of these experiments are in Tables 1 and 2.

For Data Transformation, our experimentation has led to sig-
nificant advancements. As shown in Table 1, our framework show-
cased new SoTA performance on BingQueryLogs-semantics, Stack-
overflow, achieving F1 scores of 91.6 and 87.4 respectively. The
performance on FF-GR-Trifacta and Head cases datasets are slightly
lower than the one from PBE method, possibly contributed by the
lack of natural language instruction for each task.

We subsequently analyzed the failing cases qualitatively, at-
tempted to derive the taxonomy on categories that are code-solvable
and not-code-solvable. Based on 100 tasks in the Bing-query-logs
dataset and the domain knowledge, we conclude the categories in
Figure 3. In our future work, we will map the tasks to this category,
and route the tasks into using code-based solution or not.

Figure 3: Categories of code-solvable and not-code-solvable.

For Entity Matching, our findings presented in Table 2 for the
Entity Matching tasks indicate performances generally below those
achieved through per-row processing approaches. This outcome
aligns with our expectations, given the semantic complexities often
inherent in Entity Matching tasks. Our objective was to show to
what extent to which datasets could be addressed through code
generation. We see that our framework achieved an F1 score of
95.5 on Fodors-Zagats dataset, indicating that a significant portion

of this dataset can be managed effectively through string manipu-
lation. However we also observe lower F1 score on datasets such
as DBLP-ACM, suggesting the dataset might be more semantically
challenging to address through one piece of generated code. With
the development of the data router, multiple code can be generated
and hence improve the performance.

For Data Cleaning, including Data Imputation and Error Detec-
tion, we observe similar trends in Table 2 compared to the results
from Entity Matching. In the context of the Data Imputation task
on the Buy dataset, we achieved an accuracy of 84.6%. This particu-
lar example indicates that a relatively straightforward imputation
strategy can address a significant portion of the dataset. For the
Adult dataset within the Error Detection task, evaluating solely on
the income column allowed us to achieve a 100% accuracy. This
score was possible because the errors were typos introduced by the
original work on developing this dataset. This type of errors can
often be systematically detected. For the Hospital dataset, though
we only achieved 23 F1 scores, for some columns we can achieve
100% and for some columns we only achieve 0.9%. When we took a
closer look on the generated code, we noticed that the generated
code are overfitting to the demonstration data, by checking if there
are typos on a specific vocabulary curated from the demonstration
data, resulting in bad generalization towards the whole table. This
is a common type of limitation we observe for the framework.

Faulty Labels During our experiments, we encountered a few
faulty labels for the Adult dataset within the Error Detection task.
Several entries were incorrectly marked as containing errors in the
age and race columns, upon inspection, these errors were not evi-
dent. Given this discrepancy, we adjusted our evaluation solely on
the income column. This decision was made to ensure the accuracy
of our error detection analysis.

5 NEXT STEPS
Based on our encouraging preliminary results, it is clear that the
code generation framework holds promise for addressing a substan-
tial portion of data wrangling challenges across various datasets.
However, it also shows the need for our envisioned router compo-
nent. The results are positive for us to further development and
refinement of our proposed workflow. Our next steps will focus on
the following several key areas.

Generating SQLMacrosWhile our current framework focusing
on generating Python code, expanding our capabilities to include
SQL macros is a strategy to enhance efficiency especially for large-
scale datasets. SQL macros can streamline data processing tasks
by leveraging the inherent optimization and parallel processing
capabilities of relational database management systems.

Better Benchmark Datasets The limitation of existing bench-
mark datasets - often small-scale and erroneous - emphasizes the
need for more representative data that can mirror real-world com-
plexities. Our experiences thus far highlight the necessity for cleaner,
larger-scale benchmark datasets to truly assess the performance
and efficiency bottlenecks of current methodologies.

Router Development We plan to develop the envisioned task
and data routers and evaluate the effectiveness of the proposed
routing mechanisms.
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A ILLUSTRATION ON USERS EXPERIENCE
We provide an illustration of the envisioned User Experience for
human-in-the-loop code generation in Figure 4. The illustration
consists of three sections, the prompt, the generated code/macro,
and the data with LLM generated labels. Users can manually correct
the LLM-generated labels and iterate to generate a new code snippet.

Figure 4: An illustration on UX for human-in-the-loop code
generation.
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